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Abstract 
The paper proposes a method of functional voxel modeling (FVM) of stresses arising 

under the influence of a force or heat load in an isotropic body. We consider the principles 
of modeling the unit stress in a volume vector a geometric object, set by analogy with the 
normal vector with two parameters: the function of the value and the function of the angle 
of direction.The principles of constructing a functional-voxel model are demonstrated that 
allows a computer to graphically represent a three-dimensional vector as a set of M-images 
displaying local geometric characteristics of the obtained functional area.The possibilities of 
constructing stress fields from distributed loads by means of sequential addition of a single 
stress distributed in space are considered . The principles of constructing a single thermal 
stress and constructing distributed fields based on it are considered separately. Existing ap-
proaches are used to model the shape of thermal expansion of the body. The obtained visual 
images of stresses and strains are compared with the simulated results in the existing com-
putational modules based on FEM. The advantages of visualizing the results obtained from 
the standpoint of accuracy and clarity of representation are demonstrated. The prospects of 
such an approach to modeling visual physical quantities in relation to the visual diagnostics 
of the part geometry are considered. 
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Introduction 
Despite the increased interest in the task of visualization of simulated physical quantities, to 
date, no hardware or software tools has been proposed that can provide an adequate re-
sult.Even obtaining the value of the stress at a specific point of an isotropic body entails cal-
culations with relative to the values which can be measured by instruments [1,2] or are cal-
culated by complex differential equations (FEM). For example, the resulting deformation of 
the body helps to simulate the intense field acting in this case. The fact that stress is a struc-
tural quantity that influences the design process is shown by developing new directions for  
designing optimal geometry of structures relative to premodeled stresses. Thus, there is a 
need to obtain local stress (stress from a point load) as a structural unit for a minimum site. 
The selection of such a stress element allows you to proceed to the design of stress fields of 
any configuration. Existing CAD design modules such as SolidWorks, PTC Creo, ANSYS, 
etc. [3] do not allow effective work with local stress and are focused on modeling grid re-
gions. At the same time, any attempts to model the point load lead to a complex problem of 

https://doi.org/10.26583/sv.12.3.05
mailto:a.tolok@stankin.ru
mailto:m.loktev@stankin.ru
mailto:nat_tolok@mail.ru
mailto:a.m.plaksin@gmail.com
mailto:sapushkarev@gmail.com


singularity of the simulated mesh, which negatively affects the stability of the FEM calcula-
tion (Fig.1). The fact that stress is a structural quantity that influences the design process is 
evidenced by developing new directions in designing the optimal geometry of structures rel-
ative to previously modeled stresses. Thus, it becomes necessary to obtain local stress 
(stress from a point load) as a structural unit for a minimum site. The selection of such a 
stress element allows us to proceed to the design of stress fields of any configuration. Exist-
ing CAD design modules such as SolidWorks, PTC Creo, ANSYS, etc. [3] do not allow effec-
tive work with local stress and focus on modeling grid regions. Moreover, any attempts to 
simulate a point load lead to the difficult problem of the singularity of the simulated mesh, 
which negatively affects the stability of the FEM calculation (Fig. 1). Uniform thickening of 
the grid leads to an increase in the estimated time, and even to a lack of RAM in the com-
puter. 
 

 

 
Figure 1: Example of the result of calculat-
ing the stress after applying the grid singu-

larity at the point of force application 

Figure 2: Distribution of the force flux in a 
area near of point of application of force 

 
The approach to  the construction a local stress model considered in the article is one of the 
directions of a whole series of studies conducted by prof. Tolok A.V.It is devoted to the ap-
plication of the functional voxel modeling method (VFM) [4] in solving engineering prob-
lems of the life cycle.Prior to this, such problems as finding the path with obstacles [5], 
problems of geometric modeling [6], problems of calculating the integral values of objects of 
complex geometry [7], solving mathematical programming problems [8], etc. were consid-
ered.The basis of the PCM method is the principle of organizing symbolic and graphical in-
formation on a computer that combines the analytical form for describing the space of a 
function 𝑓(𝑥𝑛) = 0  with a multidimensional model of a voxel representation of its local ge-
ometric characteristics. That is, any continuous function of the form 𝑓(𝑥𝑚) = 0 in a given 
space m can be represented as a computer model containing a linear polynomial  𝑛1𝑥1 +
𝑛2𝑥2 + ⋯ + 𝑛𝑚+1 = 0 (local function) at each point in this space, describing it tangent. In 
this case  the normal components (𝑛1, 𝑛2, … , 𝑛𝑚+1) are aligned with the gradation of the col-
or palette, and each such component forms its own m-dimensional voxel.As a result, the 
space of the original function of m-dimension can be represented on the computer by the 
number of voxel images equal to 𝑚 + 1. Such an approach allows one to obtain differential 
and integral characteristics for research at points of a  functional multidimensional domain 
in a computer representation [9]. 
The proposed approach to computer modeling of local stresses is based on the theory of 
strength of materials [10], which relates to the study of tensor elements. With the transition 
to grid methods of calculation (FE, MGE, etc.), the theoretical aspects of this subject are 
undeservedly reduced to student study and are rarely used in computer practice.This is due 
to the fact that the approaches of strength of materials describe the principle of modeling 



stress at a single point of application of force and writes the law for the selected slope of a 
given cross section. Having settled on this, the theory of sopromat does not allow simulating 
the transition from the vector of the applied force to the volumetric stress vector, as a geo-
metric object that occurs in a solid isotropic medium and allows modeling of local stress.  

1. Volume vector 
We introduce the geometric concept of a volume vector as a unit of the volume distribution 
of a force vector in a solid isotropic medium. 
Definition. A volume vector should be understood as a geometric object, defined by analogy 
with a conventional vector (as a directed segment from the starting point, having an angle of 
direction α and a distant of 𝜌), however, the direction function 𝛼(𝛼) and the function of the 
value p(p) are defined for the starting point. 
 

 
Figure 3: Directional Flow force F 

 
For example, we simulate the volume vector of local stress arising in a solid isotropic body 
as a result of the action of a vertically applied force vector. In this case, the force application 
point is considered the starting point of the volume vector. Let's start by building the func-
tion 𝜌(𝜌). To do this, it is necessary to determine certain conventions, without which it is 
impossible to ensure the transition from a continuous law, characterized by infinite approx-
imations, to its discrete model. We localize the point of force application by certain unit 

neighborhood, i.e. sphere with a unit surface are 𝑆1 = 4𝜋𝑅2, где 𝑅 = 1/(2√𝜋). We general-
izes the law by adding the variable parameter 𝜌 as an increment of the distribution radius of 
the force vector 𝑆 = 4𝜋(𝑅 + 𝜌)2. Opening the brackets and transform the right part, we get 

𝑆 = 1 + 2√𝜋𝜌 + 4𝜋𝜌2 = 1 + 𝜌/𝑅 + 4𝜋𝑅2. Considering that the increase in the area under the 
applied force acts inversely with the applied force 𝐹, the desired law 𝜌 can be written as 
𝜌(𝜌) = 1/(1 + 𝜌/𝑅 + 4𝜋𝜌2). Further, it should be noted that in the case of the application of 
the force 𝐹 to the surface of a solid body, the considered neighborhood of the point turns 
into a hemisphere, which means that the law changes to  𝜌(𝜌) = 2/(1 + 𝜌/𝑅 + 4𝜋𝜌2) respec-
tively. 
Now let's turn to the construction of the law 𝛼(𝛼). Figure 2 demonstrates the principle of 
projecting the force  𝐹 on a perpendicular to the main site of normal stress. The perpendicu-
lar to such a site is determined by the direction of the straight line passing between the 
point of the body under consideration A and the application’s point of force 𝐹 (the starting 
point of the volume vector). The projection of the force 𝐹𝐴 = 𝐹𝑐𝑜𝑠𝛼. Next, we should return 
to physical conventions and understand that the applied force must have some of a planar 
neighborhood’s   radius of the application, in our case, the radius of the neighborhood is 
taken as 𝑅. 
Figure 3 shows the cross section of the application of force 𝐹  in the form of a directed flow 
to a flat area bounded by radius 𝑅. Taking the body as an infinite beam of bounded planes 
intersected at point  А you can imagine an infinite number of rotatable minimal neighbor-
hoods with the unidirectional flow of force  𝐹 applied to them (Fig. .4a). Figure 4b demon-



strates a separate case of such a turn of the neighborhood relative to the flow 𝐹, where there 
is a decrease in the number of flow elements (in the form of arrows) falling on the site of the 
neighborhood area when turning  by the angle 𝛼In Fig. 4b, the rotation is shown by the ar-
row. Given the obtained property, the projection 𝐹𝐴 takes the following form: 𝐹𝐴 =
𝐹 cos 𝛼 cos 𝛼 = 𝐹𝑐𝑜𝑠2 𝛼. 
 

 
 

Figure 4: Changing in load flow when a single neighborhood is rotated 
 
Combining the functional laws 𝑜𝑓 𝜌(𝜌) and 𝛼(𝛼)by multiplication, we obtain the general 

functional law for constructing the volume stress vector 𝜎 = 𝑉(𝜌(𝜌), 𝛼(𝛼)):  

𝜎 =
𝐹𝑐𝑜𝑠2𝛼

1 + 2
𝜌
𝑅 + 4𝜋𝜌2

, 𝑅 =
1

2√𝜋
. (1) 

If the origin of the coordinate system is set at the application’s point of force, then 

𝜌(𝑥, 𝑦, 𝑧) = √𝑥𝐴
2 + 𝑦𝐴

2 + 𝑧𝐴
2. In this case, it is also easy to calculate the value cos 𝛼. 

2. Functionaly voxelny model of arrea pressure 
In [3], the process of constructing a functional voxel model for the domain of analytic func-
tion is described in sufficient detail. It will ensure the transition of the analytical continuous 
representation of the volume vector function  𝜎 to a discrete functional-voxel computer rep-
resentation. In this case, a computer organization of voxel images is created that provide an 
area‘s description of the domain’s volume vector function at the presentation’s level by its 
local geometric characteristics. For illustration purposes, Figure 5 illustrates an example of 
a two-dimensional representation of the central section in the 𝑥𝑂𝑧 plane of a volume vector 
in the form of four model  images (M-images). The first two M-images store information 
about the normal components 𝑛1  and 𝑛2 on the 𝑂𝑥 and 𝑂𝑧 axes, т the third M-image repre-
sents the values of the 𝑛3 component for the σ value axis , and the fourth M-image is the n4  
component  and provides the necessary information to determine the position of the  nor-

mal on the function area. Moreover, the function 𝜎 = 𝑉(𝜌(𝜌), 𝛼(𝛼)) is replaced by a local 

function of the form 

𝜎 =
𝑛4

𝑛3
−

𝑛1

𝑛3
𝑥 −

𝑛2

𝑛3
𝑧, where 𝑛𝑙 =

2(𝐶𝑙−
𝑃

2
)

𝑃
,  l=1…4,  P=256 – halftone palette. (2) 
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Figure 5: M-images depicting local geometric characteristics of the unit for a single normal 
stress 



Calculating σ using the formula (2) allows us to calculate the palette for the image of the 
unit stress values: 

𝑐𝑖,𝑗
𝑙 =

256𝜎𝑖,𝑗

𝐹
. (3) 

Figure 6a shows an image of normal values for a unit pressure distributed over a tone gra-
dation. 
 

   
a b c 

Figure 6: Visualization of the normal stress during localization of the power load: a) Image 
of the unit stress by the FVM method, b) Image of the pressure when the load  localization 
by the FEM method, c) distribution of the unit vector over the local area of the force appli-

cation by the PCM method. 
 
Figure 6b is presented for comparison. It was obtained on the FEM grid when trying to set 
the minimum area of force application. It is clear that it is not possible to bring such a local-
ization to a single point as it is done in the FVM, however, it will not be difficult to solve the 
inverse problem of reducing the unit stress at the point (Fig.6a) obtained by the FVM to a 
distribution over a certain area of the minimum  areas’section  values of unit stresses, taking 
into account their spatial location. Figure 6c shows the distribution of unit stresses for the 
local loading section. It should be noted that the results are similar to Figure 6b, but the im-
age (6c) obtained by the sum of unit stresses is more attractive, since it looks continuously 
smooth in accordance with the physical law itself and its image is stable to  changes in the 
space discretization step and does not depend  on the shape mesh element simulated for 
FEM.  

3. FV-model of tangent unit stress 
Since the tangent stress is orthogonal  to  the normal one, the module of the volume vector 

model 𝜏 = 𝑉(𝜌(𝜌), 𝛼(𝛼)) takes the form  

𝜏 =
𝐹 sin 𝛼 cos 𝛼

1 + 2
𝜌
𝑅 + 4𝜋𝜌2

, 𝑅 =
1

2√𝜋
 (4) 

 
At the same time, M-images of the created FV-model display the corresponding local geo-
metric characteristics on the considered function area (Fig. 7). 
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Figure 7: M-images displaying local geometric characteristics for a unit tangent stress 



In Figure 8, by analogy with the sixth figure, the results of modeling images of tangent 
stresses applied to the minimum area inside the body are shown sequentially. Figure 8a is 
derived from M-images and a local function 

𝜏 =
𝑛4

𝑛3
−

𝑛1

𝑛3
𝑥 −

𝑛2

𝑛3
𝑧, where 𝑛𝑙 =

2(𝐶𝑙−
𝑃

2
)

𝑃
,  l=1…4,  P=256 – halftone palette (5) 

 
The image in Figure 8b depicts the result of displaying the image of tangent stresses for a 
local load, modeled by the FEM method. The red region is the region of maximum positive 
values of the function 𝜏, and the blue region is negative - the minimum. A similar simulation 
using the FVM allows you to get an image similar in content, but only with a more pro-
nounced smooth shape of the formed stress surface. 
 

  
a b 

Figure 8: Visualization of the tangential stress during localization of the power load: a) 
Image of a single voltage using the FVM method, b) Image of the stress during localization 

of the load using the FEM method 

4. Temperature unit stress 
To build an image of a unit of temperature stress, you can use the rules for constructing a 
volume vector, the principles of which are described in the first paragraph. In this case, the 
direction’s absence of the applied temperature should be taken into account, which means 
that the function 𝛼(𝛼) = 0, and the value of the temperature applied to the surface of the 
body allows us to use the function of the value 𝜌(𝜌) to model the stress distribution in the 
body. An analytically volume vector for a unit of temperature stress can be written:  

𝜎𝜃 =
2𝜃

1 + 2
𝜌
𝑅 + 4𝜋𝜌2

, 𝑅 =
1

2√𝜋
, 

where 𝜃 is the temperature applied at a point on the boundary of the body. 
Functionalvoxel model is determined by similarity with the voltage arising from the force 
effects and leads to a similar local function 

𝜎𝜃 =
𝑛4

𝑛3
−

𝑛1

𝑛3
𝑥 −

𝑛2

𝑛3
𝑧, 

where  

𝑛𝑙 =
2 (𝐶𝑙 −

𝑃
2)

𝑃
 

, l=1…4,  P=256 – halftone palette. 
 
Figure 9 presents M-images characterizing the local geometric characteristics in the consid-
ered area. 
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Figure 9: M-images showing local geometric characteristics for a single temperature stress 
 
Figure 10a shows the result of modeling  images of temperature stress applied at a surface 
point on the surface of an isotropic body by the proposed approach. For  visual comparison  
the obtained model calculation results by analogy with the previous cases, the results of the 
calculating the same problem using the FEM method are presented (Fig. 10b). The distribu-
tion of temperature load is carried out by ordinary summation of point loads uniformly dis-
tributed along the selected direction. Figures 10b, d show the result of heat load distribution 
along the 𝑂𝑥 axis for both approaches, respectively. The results show the shape of the re-
sulting temperature distribution is identical in both cases.  
 

 
a b 

 
c d 

Figure 10: Examples of visualization of thermal stress simulation results: a) Calculation of 
thermal stress for the temperature applied at a point by the FEM method, b) FEM method 
for the same task, c) Calculation of thermal stress for the distributed temperature by the 

FEM method, d) the FEM  method for that same task. 

5. Modeling of local thermal expansion 
The thermal expansion of the material is an important parameter for any mechanical pro-
cess. Its accounting is necessary in various technologies related to the accuracy of material 
processing, etc. Consider the problem of modeling the shape of thermal expansion for the 
possibility of visual diagnostics. Based on the obtained functional-voxel model, which allows 
one to obtain  𝜎𝜃 values for each point of the considered area  without any difficulties, the 
shape of the additional relative volume is simulated with the expected expansion of the ma-
terial depending on temperature values:  



∆𝑉 = 𝛼𝑉𝑉𝜎𝜃, 
where 𝛼𝑉 – coefficient of thermal expansion. 
Figure 11a, b gives an example of the result of modeling the shape of thermal expansion by 
the proposed method and the FE method on a triangulated grid for visual comparison. In 
both cases, the result was obtained in a comparable time period of calculation.There is an 
obvious difference in the visibility of presenting the same result for the case of using the 
voxel (Fig. 11a) and polygonal (Fig. 11b) models. 
 

  
a b 

Figure 11: Visualization’s examples of the thermal  expansion results of modeling   : a) cal-
culation of the cross section  shape of the thermal expansion of the material for the temper-
ature, applied at the point by the FWM method, b) calculation of the cross section shape of 
the thermal expansion of the material for the temperature, localized small neighborhood by 

the FEM method. 
 
Figure 12 shows an example of spatial modeling of the form of thermal expansion, con-
structed by the functional-voxel method as one of the means of visual diagnostics of the 
thermal process. 
 

  

a b 
Figure 12: Examples of constructing the form of thermal expansion: a) For uniformly dis-

tributed thermal loading, b) For point thermal loading. 

6. Conclusion 
In this paper, we considered the means of local geometry in computer representation for 
modeling physical quantities. At the present stage, geometric modeling accompanies engi-
neering tasks, limited to the procedure for constructing a finite element mesh and its ad-
justment. Further, methods related to mathematical physics are based on the construction 
of complex differential equations enter into the calculation. At the same time, the local (dif-
ferential) geometry, which is intended for the subsequent stage of modeling physical quanti-



ties on the minimal sections of the object, has not yet received its computer representation. 
The main advantage of the proposed approach is the absence in the differential equations’ 
calculations of the grid decomposition used in the FEM. The discretization of the function 
space proposed in the FVM basically contains the derivation of differential characteristics 
that make it possible to model complex physical processes with simple algebraic expressions 
of laws.  Additional advantages of the proposed approach can also be considered the possi-
bility of significantly simplifying the calculation at the investigated point in space, as well as 
the possibility of parallelizing the computational process with the existing simplest means.  
The prospect of further research is to develop tools modeling more complex problem state-
ments for engineering calculations based on the developed approach. 
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